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On a conjecture of Naito-Sagaki: Littelmann paths
and Littlewood-Richardson Sundaram tableaux
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Abstract. In recent work with Schumann we have proven a conjecture of Naito-Sagaki
giving a branching rule for the decomposition of the restriction of an irreducible repre-
sentation of the special linear Lie algebra to the symplectic Lie algebra, therein embed-
ded as the fixed-point set of the involution obtained by the folding of the correspond-
ing Dynkin diagram. This conjecture had been open for over ten years, and provides
a new approach to branching rules for non-Levi subalgebras in terms of Littelmann
paths. In this extended abstract we motivate the conjecture, prove it for several cases,
where we also relate it to the combinatorics of polytopes and Littlewood-Richardson
cones, and highlight some difficulties of the proof in general.

Résumé. Dans un travail récent avec Schumann, nous avons demontré une conjecture
de Naito-Sagaki donnant une règle de branchement pour la restriction d’une représen-
tation irréductible de l’algèbre de Lie spéciale linéaire à l’algèbre de Lie symplectique,
qui se plonge comme les points fixes de l’automorphisme de pliage du diagramme de
Dynkin. Cette conjecture a été ouverte depuis plus de dix ans, et donne une nouvelle
perspective sur les règles de branchement pour les sous-algèbres de Lie qui ne sont pas
de Levi, en termes des chemins de Littelmann. Dans ce résume étendu, nous motivons
la conjecture et la démontrons dans certains cas, pour lesquels nous faisons aussi un
lien avec la combinatoire des polytopes et cônes de Littlewood-Richardson ; et nous
décrivons les difficultés de la démonstration du cas général.
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1 Introduction

Let g be a semi-simple Lie algebra over the field of complex numbers and σ ∶ g → g an
automorphism of finite order. In [5], Kac has shown that σ is conjugate to the automor-
phism induced by a Dynkin diagram automorphism, and that the set of fixed points
gσ is again a semi-simple Lie algebra, of one of six possible types. The basic problem
of decomposing the restriction of an irreducible representation of g to gσ (known as a
“branching rule”) is, in general, open.

*The author was financed by the Graduiertenkolleg 1269: Global Structures in Geometry and Analysis,
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If, however, the automorphism σ is semi-simple and has infinite order, then gσ is a
Levi subalgebra [15]. In this case, there exist natural and beautiful branching rules in
terms of Littelmann paths [7]. Littelmann paths are generalisations of Young tableaux
to all Kac-Moody Lie algebras, and were used [7] to give a remarkable generalisation
of the Littlewood-Richardson rule for the decomposition of the tensor product of two
irreducible finite-dimensional representations.

In [9] a new approach to the branching problem was suggested by Naito-Sagaki in
terms of Littelmann paths for g = sl(2n, C) and gσ = sp(2n, C) in the form of a conjec-
ture. In this paper we reformulate the conjecture in terms of symplectic Littlewood-
Richardson tableaux, which were previously studied by Sundaram in [12]. We call them
Littlewood-Richardson Sundaram tableaux. We give a proof of the conjecture in some
cases using this reformulation, which was used in [11] to give a general proof. Our
methods imply a bijection between lattice points of polytopes, in the spirit of Berenstein-
Zelevinsky and Knutson-Tao [1] [6]. We believe that this new approach to branching will
play an important role in the future.

2 Notation for the Lie algebras

Let h ⊂ sl(2n, C) be the Cartan sub-algebra of diagonal matrices. Let εi be the linear map
h → C defined by diag(a1, ⋯, a2n) ↦ ai. We write sl(2n, C) = ⟨xi, yi, hi⟩i∈{1,⋯,2n−1} where
hi = Eii −Ei+1,i+1 and where xi and yi are the Chevalley generators corresponding to the
simple root αi ∶= εi − εi+1. The automorphism σ is given by

σ(xi) = x2n−i,
σ(yi) = y2n−i, and
σ(hi) = h2n−i.

The fixed point set gσ is generated as a Lie algebra by ⟨x̂i, ŷi, ĥi⟩i∈{1,⋯,n} (see Proposi-
tion 7.9 in [5]), where

x̂i =
⎧⎪⎪⎨⎪⎪⎩

xi + x2n−i if i ∈ [1, n)
xn if i = n

ŷi =
⎧⎪⎪⎨⎪⎪⎩

yi + y2n−i if i ∈ [1, n)
yn if i = n

ĥi =
⎧⎪⎪⎨⎪⎪⎩

hi + hα2n−i if i ∈ [1, n)
hn if i = n.

This Lie algebra is isomorphic to sp(2n, C) (see Proposition 7.9 in [5]) and hσ =
n
⊕
i=1

ĥi =
h∩ gσ ⊂ h is a Cartan subalgebra. Let PCn ⊂ (hσ)∗ be the set of integral weights of gσ with
respect to hσ, and let PA2n−1 ⊂ h∗ be the set of integral weights of g with respect to h.
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To avoid confusion we will denote elements of PA2n−1 by λ and elements of PCn by λ̂;
in particular, the fundamental weights in PA2n−1 will be denoted by ω1,⋯, ω2n−1, and the
fundamental weights in PCn by ω̂1,⋯, ω̂n. We can then write

PA2n−1 =
2n−1
⊕
i=1

Zωi

and
PC2n =

n
⊕
i=1

Zω̂i,

where the direct sums are as Z-modules. Also, for λ = a1ω1 + ⋯ + anωn we write
λ̂ = a1ω̂1 +⋯ + anω̂n for the corresponding element in PCn . Weights with non-negative
coefficients are called dominant. We will denote the corresponding sets by P+A2n−1

and
P+Cn

. We will consider the real vector spaces hR and hσ
R

spanned by the fundamental
weights ω1,⋯, ω2n−1 respectively ω̂1,⋯, ω̂n. The dominant Weyl chamber is the convex
hull of the dominant weights in h∗

R
(respectively (hσ)∗

R
).

3 Tableaux, words and their paths

A shape is a finite sequence of non-negative integers d = (d1,⋯, dk). An arrangement
of boxes of shape d consists of d1 +⋯+ dk top-left aligned columns such that the first d1
columns (from right to left) have one box, and the first ds boxes after the (d1 +⋯+ds−1)-th
column have ds boxes. To a dominant integral weight λ = a1ω1 +⋯+ a2n−1ω2n−1 ∈ P+A2n−1
we assign the shape dλ = (a1,⋯, a2n−1).

Example 1. For λ = 3ω1 +ω2 we have dλ = (3, 1). To it is associated the following arrangement
of boxes:

A semi-standard tableau of shape d is a filling of an arrangement of boxes of shape d
with letters from the either one of the ordered alphabets

A2n = {1 < ⋯ < 2n}

or
Cn = {1 < ⋯ < n < n < ⋯ < 1}

such that entries are strictly increasing downwards along each column of boxes and
weakly increasing along each row from left to right. If the entries of a given semi-
standard tableau belong to A2n we will call it a semi-standard Young tableau, and if
they belong to Cn, we will call it a symplectic semi-standard tableau. We will denote
the set of semi-standard Young tableau of shape d by Γ(d)SSYT.
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Example 2. A semi-standard Young tableau of shape (3, 1):

1 1 2 5

2

Let W (A2n) denote the word monoid on A2n and W (Cn) be the word monoid on
Cn. The word w(T ) of a semi-standard tableau T is obtained by reading its rows, from
right to left and top to bottom.

Example 3. The symplectic semi-standard tableau T = 1 1 2 5

3
has word w(T ) = 52113.

4 Restriction of paths that come from words

4.1 Paths and their restrictions

We will consider paths to be continuous maps π ∶ [0, 1] → h∗
R

, π′ ∶ [0, 1] → (hσ
R
)∗ starting

at the origin and ending at an integral weight:

π(0) = 0 = π′(0), π(1) ∈ PA2n−1 , π′(1) ∈ PCn .

The map h∗ → (hσ)∗, ϕ ↦ ϕ∣hσ induces a map res′ ∶ PA2n−1 → PCn . Given a path π ∶ [0, 1] →
h∗

R
, we define a restricted path res(π) by res(π) ∶ [0, 1]→ (hσ

R
)∗, t ↦ res′(π(t)).

We will also consider the concatenation π2 ∗π1 of two paths π1 and π2 with the same
codomain: it is the path obtained by translating π2 to the endpoint π1(1) of π1. A path
is dominant if its image is contained in the dominant Weyl chamber.

4.2 Paths that come from words

In the first part of this section we follow Section 2 of [9]. Let w = w1 ⋯ wk be a word,
either in W (A2n) or in W (Cn). To it we assign the path:

πw = πwk ∗⋯∗πw1 ,

where, for wi ∈ A2n (respectively wi ∈ Cn), the path πwi ∶ [0, 1] → h∗
R

(respectively πwi ∶
[0, 1] → (hσ

R
)∗) is given by t ↦ tεwi , where we define ε l ∶= −ε l for 1 ≤ l ≤ n. Also, in

general, for paths π1,⋯, πk ∶ [0, 1]→ h∗
R

, we have

res(π1 ∗⋯∗πk) = res(π1) ∗⋯∗ res(πk). (4.1)

Set ε̂ i = res(εi) for i ∈ {1,⋯, 2n}. Then, for i ∈ {1,⋯, 2n} and j ∈ {1,⋯, n} we have

ε̂ i(ĥ j) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

1 if i ∈ {j, 2n − j}
−1 if i ∈ {j + 1, 2n − j + 1}
0 otherwise.

(4.2)
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Therefore ε̂ i = − ε̂ 2n−i+1, which means we can describe res(πw) in the following simple
way for w ∈ W (A2n): First obtain from w a word res(w) in the alphabet Cn by replacing
a letter wi in w with 2n −wi + 1 if n < wi ≤ 2n. All other letters stay the same. The
corresponding path πres(w) coincides with res(πw) by (4.2) and (4.1).

Example 4. Let n = 2 and w = 121223341. Then res(w) = 121222 2 11.

5 The Naito-Sagaki conjecture

Let λ ∈ P+A2n−1
be dominant and let L(λ) be the associated simple module for sl(2n, C).

Recall the set Γ(dλ)SSYT of semi-standard Young tableaux of shape dλ. Let

domres(λ) = {η = res(πw(δ)) dominant ∶ δ ∈ Γ(dλ)SSYT}

be the set of restricted paths associated to words of elements of Γ(dλ)SSYT that are dom-
inant, and for ν ∈ P+C2n

, let

domres(λ, ν) = {δ ∈ domres(λ) ∶ δ(1) = ν}.

Example 5. Let n = 2 and λ = ω1 +ω2. Then

domres(λ) = { 1 1

2
,

1 1

1
}

domres(λ, λ) = { 1 1

2
}

domres(λ, ω1) = { 1 1

1
} .

Theorem 1. (Schumann-Torres, 2016 [11]) Let λ ∈ P+A2n−1
be dominant, and let L(λ) be the

associated simple module for sl(2n, C). Then

resggσ(L(λ)) = ⊕
δ∈domres(λ)

L( ^
δ(1)).

Example 6. Let n = 2 and λ = ω1 +ω2 as in Example 5. Then

resggσ(L(λ)) = L(ω̂1)⊕L(ω̂1 + ω̂2).

Remark 1. Theorem 1 was conjectured by Naito-Sagaki in [9] in 2005. In [9] it is stated for L(λ)
a representation of gl(2n, C) for λ non-negative and dominant. However, the representation of
gl(2n, C) induced by an irreducible representation of sl(2n, C) has the same highest weight and
restricts back to itself. See §15.3 in [3].
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6 Littlewood-Richardson tableaux and n-symplectic Sun-
daram tableaux: branching

Definition 1. Let λ, ν ∈ PA2n−1 be two dominant weights such that dν ⊂ dλ (this means that one
shape is contained in the other when aligned with respect to their top left corners. In Example 7
below we see that dν ⊂ dλ). A tableau T of skew shape λ/ν is a filling of an arrangement of boxes
of shape λ leaving the boxes that belong to ν ⊂ λ blank, with the others having entries in the
alphabet A2n, and such that these entries are strictly increasing along the columns and weakly
increasing along the rows. The word w(T ) of T is obtained just as for semi-standard Young
tableaux, reading from right to left and from top to bottom, ignoring the blank boxes.

A shape d = (d1,⋯, dk) is even if di = 0 unless i is an even number, for i ∈ {1,⋯, k}.
Also, for a shape d define l(d) to be the length of the longest column of the associated
arrangement of boxes.

Definition 2. Let λ, ν, η ∈ P+A2n−1
be dominant weights such that the shapes dν and dη are con-

tained in the shape dλ of λ. A Littlewood-Richardson (respectively Littlewood-Richardson
Sundaram or n-symplectic Sundaram) tableau of skew shape λ/ν and weight η is a tableau of
skew shape λ/ν that is semi-standard, and has a dominant word of weight η (respectively dη is
even and 2i + 1 does not appear strictly below row n + i for i ∈ {0, 1,⋯, 1

2 l(dη)}). Here a word
w ∈ W (A2n) is dominant if the path πw is dominant. We will denote these skew tableaux by
LR(λ/ν, η) (respectively LRS(λ/ν, η)). Littlewood-Richardson Sundaram tableaux were intro-
duced by Sundaram in [12], as n-symplectic tableaux.

Remark 2. Note that if l(λ) ≤ n (such weights are called stable) then LRS(λ/ν, η) = LR(λ/ν, η).

Remark 3. If λ is stable and T is a Littlewood-Richardson tableau of skew shape λ/ν then its
entries belong to the set {1,⋯, n}. This is because if, say, k appears in row lk of T , then, since
the word of T is dominant, a k − 1 must appear either directly above k in the same column, or in
a column to the right, and since T is semi-standard, it appears in at most row lk − 1.

Example 7. The tableau L =
1 1

2

2

is a Littlewood-Richardson tableau of skew shape λ/ν

and weight η for λ = ω1 +ω2 +ω3, ν = ω2, and η = 2ω2 and the tableau T =
1

is a Littlewood-

Richardson tableau of skew shape λ′/ν′ and weight η′ for λ′ = ω3, ν′ = ω2, and η′ = ω1. Notice
that L is 2-symplectic Sundaram while T is not.

Definition 3. The Littlewood-Richardson coefficient is defined as the number cλ
ν,η ∈ Z≥0 such
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that

L(ν)⊗L(η) = ⊕
dν⊂dλ

cλ
ν,ηL(λ)

where L(λ), L(ν), and L(η) are all representations of sl(2n, C).

Theorem 2 below is known as the Littlewood-Richardson rule. It was first stated in 1943
by Littlewood and Richardson.

Theorem 2. [2] The Littlewood-Richardson coefficients are obtained by counting Littlewood-
Richardson tableaux:

cλ
ν,η = ∣LR(λ/ν, η)∣.

Remark 4. Theorem 2 implies that cλ
ν,η = cλ

η,ν.

We will use the notation cλ
ν,η(S) = ∣LRS(λ/ν, η)∣. The following theorem was proven by

Sundaram in Chapter IV of her PhD thesis [12]. See also Corollary 3.2 of [13]. For stable
weights it was proven by Littlewood in [8] and is known as the Littlewood branching
rule.

Theorem 3. [12] Let λ ∈ PA2n−1 be dominant. Then

resggσ(L(λ)) = ⊕
dν⊂dλ

l(dν)≤n

Nλ,νL(ν)

where Nλ,ν = ∑
dη even

cλ
ν,η(S).

7 On the proof of the Naito-Sagaki conjecture.

To prove the conjecture, in [11] we construct a bijection

domres(λ, ν) 1∶1←→ ⋃
dη⊆dλ;

dη even

LRS(λ/η, ν). (7.1)

To do so we have used combinatorics of “up-down tableaux”, and a result by Sun-
daram and Berele which is in spirit of a symplectic Robinson-Schensted Knuth corre-
spondence. Here we provide a direct bijection in the case of n = 2 and λ = a1ω1 + a2ω2 +
a3ω3, for all n. The advantage of this proof is highlighted in Remark 6. The following
construction should provide some insight. Given a tableau T ∈ domres(λ) we will con-
struct a weight ηT with even shape dηT

. To do this, first replace, in T , all letters w such



8 Jacinta Torres

that n < w ≤ 2n by 2n −w + 1, and denote the resulting symplectic semi-standard tableau
by res(T ). Its word w(res(T )) is equal to the restricted word res(w(T )). Now, in each
column of res(T ), replace an entry w by a blank square if w appears to its left in the
word res(w(T )) = w(res(T )). In that case, replace the entry w by a blank square as
well. Count the number of blank squares in each column, and order these squares to
obtain an arrangement of boxes of shape dηT

.

Example 8. Let n = 2 and

T =
1 1 1

2 2

3

.

Then

res(T ) =
1 1 1

2 2

2

, ηT = ω2, and dηT
= (0, 1)

where the arrangement of boxes of shape dηT
is obtained by replacing

2

2
in res(T ) by blank

squares.

Lemma 1. Let T be as above. Then the shape dηT
is even.

Idea of proof. The proof is by induction on the number of right-most aligned columns of
T and is a consequence of the semi-standardness of T .

Remark 5. Lemma 1 is only true for T a semi-standard Young tableau. Consider for example
n = 2 and the key (as in [4], [14]) T = 1 4 1 . Then res(T ) = 1 1 1 is dominant,
however, the shape ηT = (1, 0) is not even.

Lemma 2. If λ = a1ω1 + a2ω2 + a3ω3 and ν and η are dominant weights in PA2n−1 such that dη

is even and both dη and dν are contained in dλ, then

cλ
ν,η(S) = cλ

ν,η.

Proof. Assume that T is a Littlewood-Richardson tableau of skew shape λ/ν and weight
η that is not Sundaram. This means that there is at least a “1” in the third row. This
is impossible due to semi-standardness of T , the dominance of its word, and dη being
even.
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Proof of (7.1) for n = 2 or λ = a1ω1 + a2ω2 + a3ω3. Let T ∈ domres(λ, ν), and set

m1 = # columns inT of the form
1

2

1

,

m2 = # columns in T of the form
1

2

2

,

m3 = # columns in T of the form
1

1
and

m4 = # columns in T of the form
1

2

3

.

If n = 2 then m2 = m4. It follows from semi-standardness and dominance of res(w(T ))

that these are the only possible columns aside from columns of the form
1

2
and the

single box columns 1 . Note that since res(w(T )) is dominant, the following condition
holds

m1 ≤ λ1 − λ2. (7.2)

Actually (7.2) is equivalent to the dominance of res(w(T )), once the λi’s are set. We
assign to T a Littlewood-Richardson tableau ϕ(T ) ∈ LR(λ/ηT , ν). By Lemma 1, ηT is
even.
Write λ = λ1ε1 + λ2ε2 + λ3ε3. Note that ηT has m = m1 +m2 +m3 columns, all of length 2.
Fill in the first λ1 −m right-most boxes in the first row with a “1” , and the first λ2 − b
right-most boxes in the second row with a “2”. If n ≠ 2 fill in the first m4 right-most
entries of the third row with a “3”. Then fill in the next right-most m1 entries in the third
row with a “2”, and the remaining entries with a “1”. The resulting tableau ϕ(T ) is a
Littlewood-Richardson tableau by construction. Now we will show that any element in
⋃

dη⊂dλ;
η even

LR(λ/η, ν) can be obtained in this way. Let η ∈ P+A2n−1
have an even shape dη ⊂ dλ

(this means dη consists of size 2 columns) and let L ∈ LR(λ/η, ν). Set

l1 = # of 1’s in L

l2 = # of 2’s in L , and
b = # of columns of η.

Note that this information determines L together with λ. In view of the previous
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construction, we would like to find non-negative integers m1, m2, m3 and m4 such that

l1 = λ1 −m1 −m3 (7.3)
l2 = λ2 −m3 −m2 (7.4)
m = m1 +m2 +m3 (7.5)

m4 = # of 3’s in L (7.6)

Since L has a dominant word, we have

l2 − (λ2 − b) ≤ λ1 − λ2. (7.7)

Substituting (7.4) and (7.5) in (7.7) we get precisely (7.2), so if we find solutions m1, m2, m3,
the resulting tableau will automatically belong to domres(λ, ν). Claim 1 below assures
that this is the case.

Claim 1. The system determined by (7.3), (7.4), and (7.5), has integer solutions (possibly zero)
b1, b2 and b3 if and only if

m ≥ λ1 − l1 (7.8)
m ≥ λ2 − l2 (7.9)

λ1 + λ2 ≥ m + l1 + l2. (7.10)

Idea of proof. The proof is a straightforward solution of the system of equations deter-
mined by (7.3) - (7.5).

It follows from the definitions that these conditions are satisfied by all elements of

⋃
dη⊂dλ;

dη even

LR(λ/η, ν). (7.11)

Remark 6. A first direct consequence of our proof is a description of the left and right hand sides
of (7.1) as lattice points of two convex polytopes. In fact, the inequalities and variables used to
describe (7.11) figure in Section 3 of [10]. In [11] we exhibit this as a general phenomenon. The
approach taken in [11] to prove Theorem 1 is to construct a combinatorial bijection (7.1) as is
explained in Section 7. It would be interesting to know if there is a bijection, for all n, (as in
Section 7) that comes from a unimodular equivalence.
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